0 Most Tensor Problems are NP - Hard

نویسنده

  • CHRISTOPHER J. HILLAR
چکیده

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric 4-tensor is NP-hard and how computing the combinatorial hyperdeterminant of a 4-tensor is NP-, #P-, and VNP-hard. We shall argue that our results provide another view of the boundary separating the computational tractability of linear/convex problems from the intractability of nonlinear/nonconvex ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm

Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and spaceefficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the FrankWolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular, FW’s...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

Low-Rank Approximation and Completion of Positive Tensors

Unlike the matrix case, computing low-rank approximations of tensors is NP-hard and numerically ill-posed in general. Even the best rank-1 approximation of a tensor is NP-hard. In this paper, we use convex optimization to develop polynomial-time algorithms for low-rank approximation and completion of positive tensors. Our approach is to use algebraic topology to define a new (numerically well-p...

متن کامل

Quadratic third-order tensor optimization problem with quadratic constraints

Quadratically constrained quadratic programs (QQPs) problems play an important modeling role in many diverse problems. These problems are in general NP hard and numerically intractable. Semidefinite programming (SDP) relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation pr...

متن کامل

A Combined Metaheuristic Algorithm for the Vehicle Routing Problem and its Open Version

Abstract: The Open Vehicle Routing Problem (OVRP) is one of the most important extensions of the vehicle routing problem (VRP) that has many applications in industrial and service. In the VRP, a set of customers with a specified demand of goods are given and a depot where a fleet of identical capacitated vehicles is located. We are also given the ‘‘traveling costs’’ between the depot and all th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013